Cheaper

Alternative to LIDAR Based Surveying for

Michael Hernandez and James Doherty

3d Mapping

Introduction

Camera and sensor aided technology has been utilized increasingly by civil
engineers and architects, and affordable 2d LiDAR (Light Detection and
Ranging) systems have also become accessible to consumers and hobbyists
to use for a variety of purposes from surveying to various applications in
robotics. However, affordable(<$500) 3d LiDAR scanners are not widely
available on the consumer market. Our project consists of rotating a readily
available and cheap RPLIDAR A1 scanner with a hobbyist servo motor. By
combining this data with an IMU (inertial measurement unit) we measure
rotational acceleration experienced by the LIDAR. By combining the sensor
inputs we can form a point cloud of a room for analysis. Our semantic
segmentation deep learning algorithm parses through a mesh of point
clouds and detects objects. The device was tested in hallways and rooms by
measuring the location of objects and walls 1n a room and then comparing
this data with information that the LiDAR records and calculates. The project
provides a low cost option for an automatic comprehensive 3d view and
measurements of an indoor space to be used by engineers and architects to
gauge the environment and approach solutions. This 3d LiDAR scanner 1s
useful for robotics applications such as mapping/localization as well as 3d
scanning for surveying and architecture.

Objectives

1. Create a low cost 3D LiDAR scanner

2. Successfully merge several scans from the 3D scanner to create an accurate
map of the interiors of buildings.

3. Test the efficacy of the scanner under different light level conditions and
determine a practical conditions to scan and length of time for scan.

4. Implement the PointNet++ Architecture for segmentation of point clouds to
detect objects in the environment.

Materials

Hardware
» Adafruit Slamtec RPLIDAR Al ESP-WROOM-32 Development
* 35 kg Servo Motor from DS Servo Board
» HiLetgo GY521 MPU-6050 6 Axis e Camera Tripod
Accelerometer and Gyroscope e Various 3D Printed parts
« RTX 3070 GPU with 5888 CUDA
Cores

Software
Arduino IDE for Controlling ESP32

Slamtec C++ Library for RPLiDAR
PointNet++ Deep Learning on Point Sets for 3D Segmentation
CloudCompare for Visualizing Point Clouds.

Anaconda Python Virtual Environment

Procedure

Realtime Data Processing Post-Processing
I |

- \ [}l
Kalman Filter
& Complementary

Filter

Servo Motor . Tk | T
Microcontroller |

Imtertial
Measurement Linat

Convert Polar
Dvata to Rectilinear,
Apply Rotation Matrix

Sensor Fusion Write to Remove Corrupted - ' Statistical Outlier
Text Fil Data Femoval (SOR) and
s : Write to Text File

Voxelize Poinis to
25mm Eesolution,
Convert to Meters

2d LiDAR Sensor

Fig. 1: The process of collecting data and preparing it for segmentation. There are two core sensors

to the sensor fusion process: the MPU-6050 6 axis IMU (inertial measurement unit) and the Slamtec
RPLiDAR A1l 2d LiDAR scanner. The LIDAR scanner is on a servo motor controlled by the ESP-32
microcontroller and rotated on a horizontal axis. The microcontroler also polls the IMU and processes
the rotation readings through a Kalman Filter before writing these to the sensor fusion program. This
program combines the LIDAR and IMU data into a text file with one point per line. After raw data is
collected, corrupted data as a result of high polling speeds is removed and then the raw data from the
LIDAR is converted to rectilinear and a rotation matrix applies the IMU rotation readings to the LIDAR
points. Next, voxelization is used to reduce noise, and statistical outlier removal is used to further reduce
unwanted outlier points that result from an occasional faulty readings. The cleaned points are outputted

into a text file. f—\

Measurement Update (“Correct”)

| Time Update (“Predict”)
1. Compute the Kalman Gain

1. Extrapolate the state K, = P,,m,l_lh'r‘"(HP,,,“,,L_lHT + Rn)_l
,x\n+1,n = szn,n + Gu,

2. Update estimate with measurement

2. Extrapolate uncertainty Rpn = X1+ Ky(2z, — HZ 1)
Pn+1,11 = FPn,nFT +Q

Reciever

. 3. Update the estimate uncertainty
framsmier Pyn=(— KuH)Ppn1(I — KoH)T + KuRuK

Output = [distance, angle, quality, start flag]

Fig. 2: The Slamtec RPLIDAR A1MS8 Scanning

Process. The lidar scanner is rotated by a DC e Fro——— POO\J
motor. The scanner has a transmitter and reciever —
to send and detect incoming light. The distance Fig. 3: The Process of the Kalman Filter (obtained from

that the lidar measures a point at is determined kalmanfilter.net, see citations). The process of the Kalman filter
from the length of time for the light to travel. involves an initial estimate based on the previous measurement,
This allows the scanner to have 360 degree a prediction based on the previous states, and a measurement
FOV and by rotating this on a servo motor, a update based on “Kalman Gain”. The update is used to estimate
comprehensive 3D scan is made. the uncertainty of the filter. The filter is run on every iteration of

IMU readings to provide a more steady angle.

(a)

s Living Room Lights On m Living Room Lights Off

1000 I

800

1200

600

i
1
400 I
200 = I ‘
, lm
30 60 90

120 150 180
Length of Trials (s)

(b)

m Bedroom Lights On m Bedroom Lights Off

1000
800
600
40
20 I I
. HE
30 60 90 0 180

120 15
Length of Trials (s)

Thousands of Points

1200

Thousands of Points
(=]

S

(c)

1200

m Basement Lights On m Basement Lights Off
1000 82
.8
S
~
[
£ 800 5
2 E
o B
N =]
2 600 =
§ =
g
= 400
) i I I
0 .
30 60 90 120 150 180
Length of Trials (s)

Fig. 4: Average Number of Points Collected in Three Rooms With
Lights On and Lights Off. For each room (basement, bedroom,
and living room), 3 trials were conducted under the same
conditions. Lights off scans were classified by scans taken when
no light source was present, meaning all lights in the room were
turned off and scans were taken at night. Lights on scans were
taken at noon allowing for extra light from windows and all the
light sources from lamps and ceiling lights were turned on. The
difference between number of scan points shows a slightly higher
amount of points recorded from scans taken when the light level
was high. Additionally, larger rooms such as the living room (4a)
show a greater disparity in point quantities suggesting a higher
light level influences a broader scan range.

Fig. 8: A Full Scan of A
Basement From Several Point
Clouds. For the basement, the
scanner was used to take six, 60
second scans around different
parts of the room. Fig. 8a uses
normals computed in Cloud
Compare to more easily see the
surfaces found by the scanner.
In this figure stairs can be clearly
seen, as well as a door and clear
walls. Fig. 8b has smaller point
size on the same scan to look
into the scan. A couch and a
table can be made out in this
scan.

(a) (b)

m Ceiling

m Floor
Wall

m Beam

m Column

m Window
Door
Table
Chair
Sofa
Bookcase
Coard
Clutter (other)

Fig. 10: Predicted Class Distribution on Benchmark and Experimental Point
Clouds. The benchmark scans (10a) were calculated using the predictions of
the Stanford 3D Indoor Scene Dataset, while the experimental scans (10b) were
calculated on the mean of scans of a residential basement and school hallway.
The chart shows that the point clouds are high quality and contain adequate
points for walls, floors, and ceilings. The model is able to reliably detect these
features. The chart also shows that the model struggles at recognizing smaller
objects like furniture and windows, and marks these objects as clutter.

<+—— Cailing Labelled

*—— Floor Labelled
- Wall Labelled

~ Table Labelled

bathroom.

System Results

Table 1: Cummulative Rate of Points Recorded After
Cleaning Processes (points per second). The RPLIDAR
scanner has a theoretical maximum speed of 8000 points per
second but due to sensor fusion and cleaning processes, this
number is significantly less. Cleaned scanned data is classified
as data that was voxelized and filtered through the SOR filter
(see Fig. 1). What is also seen is that as the length of time of

the scan increases, the cummulative rate of point collection

decreases. Rate of point collection is also lower when the
light level is lower. From this we determined that it is not
necessarily worth it to increase the length of time for scan.

Fig. 11: Top view of labelled points predicted by our model of a scan of a residential

100.0%
90.0%

80.0%

70.0%

60.0%

% of Points Removed

50.0%

40.0%
30 60 90 120 150 180

Time of Scan (s)

e Basement Lights On =] iving Room Lights Off
e Bedroom Lights Off = e==Basement Lights Off
e Bedroom Lights On Living Room Lights On

Fig. 5: Percentage of Points Removed During Post-Processing
from Raw Scan Data to Cleaned Scan Data. Cleaned scanned
data is classified as data that was voxelized and filtered through

Time of Living Room Bedroom Basement . . .

Scan (s) | Lights On | Lights Off | Lights On | Lights Off | Lights On | Lights Off the SOR f_ﬂter (See Flg 1)' A SubStantlal number Ofp oints
30 1757 2070 2271 2220 1899 2393 collected in the scans is redundant and errors accumulate as
60 2078 1892 1827 2241 2181 time goes on. This leads to a efficiency reducing significantly as
20 2114 1656 1610 1998 1963 time goes on. Also seen with the “Lights Oftf” groups is that the
120 2027 1471 1496 1755 1771 §0€s On. . SIS ML - group .
150 1826 1356 1346 1629 1112 % of points removed is greater than the “Lights On” group. This
180 1638 1212 1239 1523 1452 shows that more light leads to less noisy and data with fewer

outliers.
() (b) (c)
Living Room Lights On ~ mLiving Room Lights Off mBedroom Lights On mBedroom Lights Off mBasement Lights On ~ mBasement Lights Off

I
' 1
100.0 I
=
50.0 i
0.0
30 60 90

120
Length of Trials (s)

| ‘ 50.
0.0
0 180

15

300.0

250.0

Thousands of Points
—_ — N
(=) W S
[==] [==] o
[e=] (=) ()

(=]

30 60 90

Length of Trials (s) Length of Trials (s)

Fig. 7: Comparison Between Raw, Voxelized and SOR Point Clouds of a 120 second scan of a living room. Fig. 7a shows raw data from the

Thousands of Points

300.0

£ 250.0
200.0
150.0
100.0
50.0 'i
0.0

180 30 60 90 0 180

120 150 120 15

Fig. 6: Average Number of Points Collected in Three Rooms With Lights On and Lights Off After Post-Processing. See Fig. 1 for more details on
the cleaning process. The relationship between number of points and light level still shows a greater number of points on average for higher light
level scans but the standard deviation also increases. A higher standard deviation suggests that there is a variability in scan quality from scan to
scan that is not accounted for by number of points. Therefore, taking multiple scans and merging them together may prove to be a viable strategy
for attaining good quality scans.

scanner, there is visible outliers especially towards the bottom of the image. Fig. 7b shows data after undergoing voxelization which removes
noise from the scan. Unnecessarily high density of points (especially towards the middle of the scan) is removed as well as some outliers.
Finally, the statistical outlier removal clearly removes many wrongly scanned points that would introduce noise into the point cloud and
make it unusable for the segmentation model.

Segmentation Results

1.2

0.8

Benchmark Mean Intersection Over Union
o o
[\ (o)}

(=]

Class

& > 2 > QD
& & & ¢
C}\ S B 9 C)O @‘&
Y .Q@*
C\Q'

IoU

1

=)

o N

PO

& School Hallway

w

mResidential Basement

Experimental Intersection Over Union
[\ [V}

o
e

& & D & S E LD
NS R\ S RS > 9
ENSIIEN Q)‘Z?’Qo\&:& & QP <P ¥ L 3 ¥ \0%‘

QP &

N

O

Class

| Tirue Positives|

" |True Positives| + |False Positives| + |False Negatives|

Fig. 9: Mean Intersection Over Union by point class for Segmentation Model Processed Data on Benchmark vs. Lidar Scans.

The intersection Over Union (IoU) for each class was calculated with the above equation. The mean loU for the benchmark dataset was
calculated using Area 5 of the Stanford 3d Indoor Scene Dataset. The Mean IoU for point clouds was calculated on visual estimates of false
negatives, positives and true positives. IoU in both benchmark (9a) and experimental (9b) trials of the segmentation was highest for the

floor, ceiling and wall classes, showing a highly accurate classification of important building features. loU was lower for furniture classes in
benchmark data (9a), and was much lower for furniture classes in experimental data (9b). This was due to a high false positive rate for the
“clutter” class and demonstrates the model has a lower understanding of smaller objects and furniture in rooms. It should be noted that IoU is
not a percent accuracy but is directly proportional to accuracy.

, Table 2: Pointnet++ Segmentation Run Time
TOte.“ Time Per |\ pint Clouds. Run time of the Segmentation
Duration . 1 ’009’000 Model was calculated by timing the duration
Scan Name (Seconds) Points PoiNtS | ,f model run time. The model used 8 gigabytes
Benchmark_Office 67 1136617 98.9 |of RAM and used a 5888 CUDA Core Nvidia
Benchmark Conference 46 777622 59.2 Geforce RTX 3070 GPU. The table shows that
Benchmark_Hallway 27 510949 52.8 time of the model is linearly proportional to the
School_Hallway 33 634021 500 |number of points ip the scan. This sugge.sts an
Basement 36 577339 624 fl)(n) runtime mak¥ng our program efficient on
ense and large point clouds with apt hardware.
Mean 41.8 727310 571 |

Hallucinations caused by Misc. Points

Fig. 12: View of inaccurately labelled points predicted by our

model caused by miscellaneous object points. The model
labelled these points as a floor instead of a sofa.

High Accuracy With Wall —»

Fig. 13: View of labelled points predicted by our model ofa
point cloud of a scan of a residential basement showing high
accuracy for wall detection.

Procedure (cont.)

After the raw data is collected and stored in a CSV file, it needs to be processed into usable points for data. The data from
the LiDAR scanner is transmitted as polar coordinates with 0 being represented in degrees. This data is run through
conversion into rectilinear coordinates. After being processed, the points are left as rectilinear points. The z value is left as
zero for the time being:
Xi
P = [J’i]
0

Next, the points are rotated about the roll, pitch, and yaw angles determined by the IMU readings. The rotation
matrices used are as follows.

1 0 0 cos(@) 0 sin(8)
Ryou(8) = |0 cos(8) —sin(@)] Rpitcn(0) = [0 1 0
0 sin(@) cos(@) —sin(@) 0 cos(9)

cos(8) —sin(6) 0
Ryaw ®) = [sin(e) cos(@) O
0 0 1

A dot product is used to determine the rotation of points.

Proy = Rroll(e) - P; Prou +pitch = Rpitch(g) *Pron Pf = Ryaw(g) - P

Generate Pseudo

~ Fig. 14: Post-processing architecture.

[

Processed Point Cloud Ein:;ﬁ:ﬁ FD(:;a Compile Point Segmented Scan The processed point cloud is parsed
folder (txt file) XYZ RGB - . Clouds as numpy as a Matrix sB and annotations are compiled into
Gather Annotations for fil J .
array files (s4) a Numpy Array with features for
Benchmark Data) ;]
Compile as a each point cloud. Annotations shows
Where s is number of point clouds to process, A is a feature matrix (nx6), n Mesh (OB file) ground truth for benchmark data, but
number of points, 6 numbers for x,y,z,(r,g,b or surface normals), B Matrix of (nx7), - generation of pseudo annotations is
n number of points 7 numbers for x,y,z,r,g,b,class necessary as the PointNet++ compiler

expects an annotated pointcloud for
o . evaluation of accuracy. Each point
5‘"""'"""""'"""""""'::;"S'IE}P'I'IHI'('?E)H??P?W%: cloud is passed to the PointNet++
' : segmentation model and a matrix with

Hierarchical point set feature learning Segmentation 37 &F @XOX > labelled points is generated. Addition-
' ' < 4 < ally, we generate a mesh (object file) for

’?’ o e R R useful applications of the point cloud

------------------------------------- in CAD SoftwareS, robotic usage and
a Qo'\‘i data visualization.
— s — = T
interpolate unit interpolate unit

pointnet pointnet

Classification

- ~ 72}
y . y . 3) B 2
sampling & * pointnet ~ sampling & pointnet % & = 8
grouping grouping / /| “
[72]
\ VAN J iy e <
Y Y S ©

set abstraction set abstraction

pointnet fully connected layers

Fig. 15: PointNet++ Architecture for Point Set Segmentation and Classification (obtained from PointNet++
Standford University, see citations). PointNet++ herarcically learns features about the point cloud by recursively
applying sampling and grouping to divide the point cloud into local regions and learning geometric features.
Each local region is processed using a smaller Pointnet for the region. This helps to extract high level features
from multiple scales and groupings. The learned features are then interpolated and upsampled, with skip
connections to refine per-point predictions. Finally, a unit PointNet processes the refined features to output a
per-point classification score, determining the semantic label of each point.

Conclusion

It 1s possible to make a LIDAR scanner with relatively cheap components that
can obtain usable scans of real world interiors. Assuming the user has access to
a computer with Nvidia CUDA support, our scanner has an estimated cost of
$130 dollars. Making it incredibly affordable.

* When 1t comes to indoor settings, there are clear benefits to having more light
available in the room, however practical data 1s still achievable 1n the dark,
albeit with more noise and fewer points for the same length of time.

* Longer scan time does not necessarily correlate to higher scan quality.
Qualitatively, we determined that 60 second scan times were highly usable for
segmentation, especially after being combined with multiple other scans. After
90 seconds of scan time, the chances of a scan failing increase, as well as the
number of outliers (Fig. 5)

» Point Clouds generated by our solution are reliable enough to be segmented by
a pre-trained Pointnet++ model, particularly for non-furniture classes.

* Our solution generates segmented point clouds that can prove helpful for

architects, engineers, robotics and any future project that requires an annotated

3d model of an interior space. Our contributions are helpful to enhancing the
affordability of the developing field of computer vision.

Future Modifications

1. Using Raspberry P1, we can make the entire system wireless, making it far
more usable 1n a real world setting.

2. By fusing sensor data with ROS2 (Robotic Operating System) we believe we
can increase reliability and speed of real time data processing. ROS2 would
also allow us to implement a SLAM (simultaneous localization and mapping)
algorithm which would allow us to move the scan around while it is recording
scan data. This would potentially give the scanner abilities relative to multi-
thousand dollar scanners.

3. We believe we can fine tune the segmentation model with annotations of our
scans to be better trained on our LIDAR (which does not include color data).

4. Additioanlly, make a graphical user interface to make the scanner more
acessible and usable for consumers.

References

Becker (www.kalmanfilter.net), A. (n.d.). Online Kalman Filter Tutorial. Www.kalmanfilter.net. https://
www.kalmanfilter.net/background.html

Charles Ruizhongtai Q1, Y1, L., Su, H., & Guibas, L. J. (2017). PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. ArXiv (Cornell University). https://doi.org/10.48550/
arxiv.1706.02413

Comerzan, S. (2021). Lidar as an additional tool for drone based reconnaissance. Institute of Technology
Carlow.

Lauszus. (2012, September 12). TKJ Electronics» A practical approach to Kalman filter and how to
implement it. TKJ Electronics. https://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-
and-how-to-implement-it/

RPLIDAR-A1 360°Laser Range Scanner _ Domestic Laser Range Scanner|SLAMTEC. (n.d.). Www.

slamtec.com. https://www.slamtec.com/en/Lidar/A 1

Slamtec RPLIDAR Public SDK for C++. (2022, October 2). GitHub. https://github.com/slamtec/rplidar
sdk

yanx27. (n.d.). Yanx27/Pointnet Pointnet2 pytorch: PointNet and pointnet++ implemented by pytorch
(pure python) and on ModelNet, ShapeNet and S3dis. GitHub. https://github.com/yanx27/Pointnet
Pointnet2 pytorch

Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A Modern Library for 3D Data Processing.
Open3d.org. https://www.open3d.org/docs/release/introduction.html

